lunes, 7 de agosto de 2017

El término cellula o célula fue acuñado en 1665 por el científico inglés Robert Hooke al observar bajo las lentes de un microscopio rudimentario las «celdillas» constituyentes del corcho y otros tejidos vegetales (que correspondían, en realidad, a restos celulares y no a células vivas). En 1674, Antony van Leeuwenhoek, un comerciante de telas holandés aficionado a pulir lentes, describió que la sangre estaba compuesta por diminutos glóbulos que fluían a lo largo de delgados capilares y realizó numerosas observaciones de diversos «animalículos» u organismos microscópicos, a menudo unicelulares, que hoy conocemos como microorganismos.

El siglo XIX constituyó, sin embargo, el verdadero punto de partida para el estudio de la célula y su función, que se desarrolló paralelamente a los avances de la microscopía y a la aparición, en la década de los años treinta, del microscopio compuesto. En 1831, el botánico escocés Robert Brown introdujo la noción de núcleo celular y en 1838, el botánico Matthias Schleiden y el zoólogo Theodor Schwann enunciaron el postulado básico de la teoría celular, según el cual todos los seres vivos, vegetales y animales, están formados por células, a las que consideraron las unidades vitales fundamentales. En 1839 Purkinje denominó «protoplasma» al contenido celular.

Estudios posteriores completaron el conocimiento de la célula. Así, en 1855, el patólogo Rudolf Virchow estableció que todas las células proceden de otras preexistentes (omnis cellula e cellula) y, ya a principios del siglo XX, las investigaciones sobre la estructura del sistema nervioso del histólogo español Santiago Ramón y Cajal, Premio Nobel de Fisiología y Medicina en 1906, demostraron la individualidad de las neuronas y pusieron de manifiesto la universalidad de la teoría celular al aplicarla también al tejido nervioso.

La teoría celular postula que la célula es la unidad fundamental de los seres vivos, desde los más sencillos (microorganismos) hasta los organismos superiores más complejos (animales y vegetales), tanto en lo que se refiere a su estructura como a su función.
  
Actualmente, la teoría celular se resume en los siguientes puntos:

- Todos los organismos vivos están compuestos por células.
- La célula es la unidad estructural y fisiológica de los seres vivos.
- Las células constituyen las unidades básicas de la reproducción: cada célula procede de la división de otras células preexistentes, siendo idéntica a estas genética, estructural y funcionalmente.
- La célula es la unidad de vida independiente más elemental.



DIVERSIDAD CELULAR.

 Las células presentan una gran variabilidad de formas e, incluso, algunas no presentan una forma fija. Las células con forma definida pueden ser redondeadas, elípticas, fusiformes, estrelladas, prismáticas, aplanadas, etc., es decir, no hay un prototipo de forma celular. El hecho de que normalmente se representen como una circunferencia, o una elipse, con un punto que representa el núcleo, es una mera simplificación de la realidad.
Muchas células libres, como, por ejemplo, las amebas y los leucocitos, que carecen de una membrana de secreción rígida y que presentan una membrana plasmática fácilmente deformable, están cambiando constantemente de forma al emitir prolongaciones citoplasmáticas (pseudópodos), para desplazarse y para fagocitar partículas. Otras células libres similares, pero sin la capacidad de emitir pseudópodos, como muchos ciliados, eritrocitos y linfocitos, presentan una forma globosa. Ello se debe a la cohesión entre las moléculas de agua. La misma causa que explica que las gotas de líquidos sean esféricas y que, si la cohesión es muy elevada, como sucede en el mercurio, conserven esta forma incluso sobre un sólido.
Las células que se encuentran unidas a otras formando tejidos, si carecen de una pared celular rígida, tienen una forma que depende, en gran parte, de las tensiones que en ella generan las uniones con las células contiguas. Por ejemplo, el tejido epitelial animal, que sirve para revestir tanto la superficie externa como los conductos y cavidades internas, puede observarse que las células profundas tienen forma prismática, mientras que las superficiales, que no experimentan tensiones por otras superiores, son aplanadas. Además, si se separan las células de un tejido, mediante la rotura de las conexiones que las unen, y se colocan en un medio de cultivo, las células tienden a adquirir la forma esférica.
En todas las células carentes de membrana rígida, su forma también viene muy influida por los fenómenos de ósmosis.

Las células provistas de pared de secreción rígida, como, por ejemplo, las bacterias que poseen una pared de mureína, la mayoría de las células vegetales que poseen una pared celular de celulosa y los osteocitos del tejido óseo, presentan lógicamente una forma muy estable. Aunque también están sometidas a fenómenos osmóticos, su forma no varía.

Finalmente, queda resaltar que la forma de las células está estrechamente relacionada con la función que desempeñan. Así, las células musculares suelen ser alargadas y fusiformes, adaptadas, pues, para poderse contraer y relajar; las células del tejido nervioso son irregulares y poseen numerosas prolongaciones, lo que está relacionado con la capacidad de captar estímulos y de transmitirlos; las células del epitelio intestinal presentan la membrana plasmática libre con innumerables pliegues para aumentar su superficie de absorción; etc.


En resumen, las formas de las células están determinadas básicamente por su función y pueden variar más o menos en relación con la ausencia de pared celular rígida, tensiones de uniones a células contiguas, viscosidad del citosol, fenómenos osmóticos y tipo de citoesqueleto interno.


0 comentarios:

Publicar un comentario

CONTADOR DE VISITAS

contador de visitas